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Abstract 

This paper shows that the single machine scheduling problem with multiple 
operations per job separated by minimum specified time-lags is NP-hard in the 
strong sense. Seven simple and polynomially bounded heuristic algorithms are 
developed for its solution when each job requires only two operations. Empirical 
evaluation shows that the percentage deviation of the heuristic solutions from their 
lower bounds is quite low and the effectiveness of these heuristic algorithms in 
finding optimal schedules increases with an increase in the number of jobs. 
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1 Introduction 

JATINDER N. D. GUPTA 

Traditional scheduling models assume that each job requires only one operation per ma- 

chine. However, in several practical situations, a machine is capable of performing more 

than one type of operation. Further, a finite time must elapse between the processing 

of two consecutive operations of the same job on the same machine. Depending on the 

practical applications being considered, a machine may remain idle during this time or 

may perform operations of other jobs. 

As an illustration of the scheduling problems with multiple job operations per ma- 

chine, consider a simple Flexible Manufacturing System (FMS) with only one work- 

station. This work-station is capable of performing more than one type of operation. All 

operations of a job need not be performed consecutively. 

In order to perform two consecutive operations of a job on the same work-station, 

refixturing of the part has to take place in a load/unload station accompanied by (manual) 

transportation activities [l]. Th ese activities (called preparing a stage to perform the 

operation) do not consume any time at the FMS work-station as they are done off-line, 

but do take a finite amount of time. This time is independent of the job sequence and 

need not be the same for all operations or jobs. During the time a job is being prepared 

for processing, the FMS work-station could be used to process one of the two operations 

of another job and need not remain idle. 

One way to approach the above problem is to assume that the off-line operations can 

be done as and when required without any resource conflicts. With this assumption, 

the scheduling problem is formulated as a single machine problem with multiple job 

operations where the time consumed for outside activities is represented as a finish-to- 

start time-lag between operations. Once a schedule for the FMS work-station has been 

constructed, it can be checked whether or not the other activities can be performed within 

the available time. 

As another example of the scheduling with multiple operations and time-lags, consider 

the scheduling of batch processing in a chemical plant where the same processor is used 

to perform various operations on the same job. However, because of several chemical 
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reactions (like the need for a job to cool down to a desired temperature), a finite amount 

of time must elapse between the finish of an operation of a job and the start of the next 

operation of the same job. 

The scheduling problems with multiple operations and timelags are considered by 

Kern and Nawijn [6] and Biezebos et al [8]. Kern and Nawijn [6] consider a single 

machine scheduling problem where each job requires two operations separated by stop-to- 

start time-lags between operations and show that the problem is NP-hard in the ordinary 

sense. Biezebos et al [S] consider a multi-stage flowshop problem with multiple operations 

per job at the same machine and stop-to-start time-lags between various operations and 

develop heuristic algorithms to solve the problem. 

The problem with multiple operations and time-lags can also be considered as a 

scheduling problem with communication delays and precedence constraints considered 

by Balas et al [2]. E ven though their problem includes non-zero release and due dates, 

the problem can be formulated as a single machine problem with multiple operations 

and time-lags. Looked at this way, a solution of the single machine scheduling problem 

with multiple operations and time-lags may provide some insights into the solution of 

the flowshop or job shop scheduling problems as well [2, 81. 

This paper considers the single machine scheduling problem with multiple operations 

and time-lags where each job requires only two operations and develops heuristic algo- 

rithms to find minimum makespan schedules. The rest of the paper is organized as follows: 

Section 2 shows that the single machine scheduling problems with multiple (and exactly 

two) operations per job and time-lags are NP-hard in the strong sense and describes 

simple lower bounds on the makespan of a schedule for the single machine scheduling 

problem with two operations per job and time-lags. Seven heuristic algorithms to mini- 

mize makespan are developed in section 3. The effectiveness of these heuristic algorithms 

in finding optimal schedules is empirically evaluated in Section 4 and found to increase 

with the increase in the number of jobs. Finally section 5 concludes the paper with some 

fruitful directions for future research. 
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2 Problem Complexity and Lower Bounds 

Following the standard notations of Lawler et al [7], we will represent the single machine 

problem with multiple operations per job and time-lags as a llOi > 1, time - lagslC,, 

problem, where 0; represents the total number of operations for job i, time-lags denotes 

the condition of time-lags between operations, and C,, implies that the objective is one 

of minimizing the maximum flowtime (also called the makespan). Further, the notation 

0; > 1 in the problem representation implies that at least some jobs require more than 

one operation per job. 

Let the processing times of the two operations of job i E N be ai and bi where 

N = {1,2, . . . . . n} is the set of all n jobs. Further, let ci denote the minimum time-lag 

between the completion of the first operation of job i and start of its second operation. 

Then, we sate the following property: 

Property 1 : For solving the l/Oi = 2, time - lagsIC,, problem, it is suficient to 

consider schedules where the second operation of any job is processed only after the com- 

pletion of the first operation of all jobs. 

Let C;,, be the completion time of the first operation of job i E N. Further, let C a;, 

C c;, and C bi denote the sum of the processing times of first operations, time-lags, and 

processing times of second operations of all jobs respectively. For each job i, define the 

release date, Ti, as the earliest time at which the second operation of job i can begin 

processing. Thus, using property 1 above, ri can be expressed as follows: 

(1) 

Then an optimal schedule of the second operations with respect to a given sequence 

of the first operations of the jobs can be found using the following property: 

Property 2 : For a specified schedule of first operations, an optimal schedule of the 

second operations of all jobs is obtained by processing second operations of all jobs in 

non-decreasing order of their release dates. 
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2.1 Problem Complexity 
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Kern and Nawijn [6] used a reduction from a simple partition problem to show that the 

110; = 2, time - lagslC - problem is NP-hard in the ordinary sense. However, the issue 

of whether the l]Oi > 1, time - lags]C,, and 110; = 2,time - Zogs]C,, problems are 

pseudopolynomially solvable is unresolved. We now provide a negative answer for this 

question. 

Theorem 1 I The l]Oi > 1, time - lagslC,, and l]Oi = 2, time - ZogslC,, problems 

are NP-hard in the strong sense. 

Proof: Using a reduction from a F2ltime - lags]C,, problem, we first show that the 

110; = 2, time - ZagsIC,, p roblem is NP-hard in the strong sense. To do so, consider 

a F2ltime - lags/C,, p roblem (called problem Pl) with n jobs where the processing 

times of job i are represented as ai and pi, and its stop-to-start time lag is ti. NOW define 

a l]Oi = 2, time - Zags/C,, p roblem P2 with n jobs where the processing times of job 

i are oi = oi and bi = pi, and its time-lag is C; = ti + K where K = Coi. 

Since the optimal sequence of second operations is given by property 2, it follows that 

the optimal schedules of problems Pl and P2 are identical. Since the F2ltime-lagsI&, 

problem is known to be NP-hard in the strong sense [3, 41, it follows that the 110; = 

2, time - lagsIC,, p roblem, is NP-hard in the strong sense. 

Since the l]Oi = 2, time - lagslC IlLax problem is a special case of the 1 ]Oi > 1, time - 

h4&ax P roblem, the above results also imply that the l]Oi > 1, time - ZagsI&, 

problem is NP-hard in the strong sense 0. 

2.2 Lower Bounds 

We now describe lower bounds on the makespan of schedule for the 110; = 2, time - 

kPGn.sx p roblem. First, the makespan cannot be less than the sum of the processing 

times of all operations. Thus, 

LB1 =Cai+Cbi (2) 



244 JA’I’INDER N. D. GUF’TA 

Second, we sssume that the first operation of all jobs can be done simultaneously. 

This relaxed problem is equivalent to a llr; = ni+GlC- problem which can be solved by 

finding a schedule Q = (a(l), o(2), . . . ..a(n)) such that jobs are arranged in an ascending 

order of ri values. Then, the makespan of this schedule, Ml, is a lower bound (LB2) for 

the l]Oi = 2, time - lagsIC,, problem. Thus, 

LB2 = Ml = mazlcj<n{ a,(j) + Cc+) + 2 b(s)} (3) 
s=j 

Third, let the schedule H = (r(l), s(2), . . . . r(n)> be such that {b,(;)+&(~} >_ {b,(;+r)+ 

~(;+r)) for all 2 _< i 5 n. Then, by symmetry of the problem, makespan of this schedule, 

M2, is a lower bound for the 1lOi = 2, time - lagslC,, problem. Thus, 

LB3 = M2 = mazl<j<,, { $ a+) + %d + %A} (4) 

Combining equations (2), (3), and (4) b a ove, a lower bound, LB, for the makespan 

of a 1lOi = 2, time - ZagsI&, p roblem can be stated as: LB = max(LB1, LB2, LB3). 

3 Heuristic Algorithms 

Since the problem is NP-hard in the strong sense, this section develops effective and 

efficient heuristic algorithms for the 110; = 2, time - lagslC,, problem. 

3.1 Heuristics with Permutation Schedules 

We first assume that the first and second operations of all jobs are processed in the 

same order and describe three O(nlogn) heuristic algorithms that generate permutation 

schedules. 

Heuristics Algorithm Hl 

Our first heuristic algorithm processes jobs in descending order of their time-lags as 

follows: 

Input: c; for i = 1, . . . , 72. 

Step 1. Find a schedule x = (*(1),x(2), . . . . ..~(n)) such that G(i) 1 G(i+r) for 

2<i<n. 
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Heuristic algorithm HZ 

The performance of the algorithm Hl can be improved by considering different scheduling 

rules depending on whether the processing times of the first operations dominate those 

of the second operations. Thus, algorithm H2 may be described as follows: 

Input: ai, b;, and c; for i = 1,. . . , n. 

Step 1. If C bi < C ei, find a schedule K = (x(l), . . . , r(n)) such that {b+i)+c,r(i)} > 

{bx(i+l) + G(i+l)) f or 2 5 i 5 n; otherwise enter step 2. 

Step 2. Find a schedule o = (a(l), . . . , a(n)) such that {Go(i) + G(i)) 5 {an(i+l) + 

Cc(ifl)} for 2 < i 5 7Z. 

Heuristic algorithm H3 

Algorithm H3 uses Johnson’s algorithm [5] to find a permutation schedule by defining a 

F2[IC,, problem with processing times oi = a; + c; and ,Bi = C+ + bi a~ follows: 

Input: Cy;, ,Bi for i = 1,. . . , n. 

Step 1. For jobs j with aj 5 pj, form a partial sequence ?r such that ~~(11 5 . . . 5 

CY,(,~), where n’ is the number of jobs j with oj 5 @j. 

Step 2. Append the jobs j with Qj > @j to A SO that &,,,+il 1 . . . 2 ,&,.,I. 

Considering permutation schedules, heuristic algorithm H3 provides the best results 

since algorithm H3 above finds an optimal permutation schedule for the FZltime - 

lags IC- and hence the l]Oi = 2, time - lagslC,, problem. 

3.2 Improvement Heuristics 

The effectiveness of the above heuristic algorithms can be improved by considering non- 

permutation schedules. Let * = (~(l),*(2), . . . , r(n)) and u = (a(l), a(2), . . . , a(n)) be 

the schedules of first and second operations. Using property 2 to reorder the second (or 

first) operations, two basic O(nZogn) improvement algorithms are as follows: 
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Algorithm F: Forward Improvement 

JATINDEX N. D. GUPTA 

Input:n,ai,c+fori=l,..., n. 

Step 1. For each job r(i) E x, calculate r=‘*(i) = c’,=, a,(,) + cl(i). Let Q = 

(41), 4% * * *, o(n)) be the schedule such that r,(;I 2 r,(;+iI for 2 5 i 5 n. 

Algorithm B: Backward Improvement 

Input: U, bi, C+ for i = 1,. . . , n. 

Step 1. For each job o(i) E o in step 1 above, calculate q~(i) = co(;) + Czci b,(,). Let 

%- = (*(Q 42) , . . . , r(n)) be the schedule q=(i) 2 qr(i+il for 2 5 i < n. 

The combinations of three permutation and two improvement heurstics results in sev- 

eral possible heuristic algorithms. In this paper, we consider seven heuristics algorithms 

as follows: 

l Three permutation heuristics: Hl, H2, H3. 

l Four improved heuristics: H4 (= H2F if C bi 5 Cai; H2B otherwise), H5 (= 

H3F), H6 (= H3BF), and H7 (= best of H6 and HGBF) where, heuristic al- 

gorithm H5, for example, represents the use of forward improvement heuristic F 

when the basic schedule is generated by heuristic H3. 

The above heuristic algorithms were selected as they provided the best combinations 

to minimize makespan as confirmed by the empirical tests deccribed in the next section. 

4 Computational Results 

This section reports the results of computational experience with a large number of 

randomly generated problems which show that the proposed lower bounds and heuristic 

algorithms are quite effective in solving the 1lCi = 2, time - ZagsIC,, problem. For this 

purpose, the proposed heuristic algorithms Hl through H7 were coded in FORTRAN 

on a VAX6620 computer to solve a large number problems. 
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The processing times of the problems were generated from a uniform distribution in the 

range (1,99). In order to examine the effect of differences in processing times and the 

time-lags, time-lags were allowed to vary in the range (1,0.2k Cy=‘=, a;) where 1 5 k 5 9. 

This large range of time-lags was used to ensure that the results obtained from the 

heuristic algorithms are not biased towards small time-lags. However, for problems where 

k 5 5, each of the heuristic algorithms was able to find optimal solutions for almost all 

problems. This is due to the fact that permutation schedules are optimal for most of 

these problems as the formation of queues makes LB1 achievable. For this reason, the 

time-lags used in these computational experiments were generated by assuming that 

6 < k 5 9. The number of jobs in each data set varied from 4 to 150 with 20 problems 

for each problem size and each value of rE. Thus, for each problem size, 80 problems were 

solved using each of the heuristic algorithms Hl through H7. 

4.2 Measures of Algorithm Effectiveness 

For each problem, the makespan was found using the proposed heuristic algorithms and 

compared to its lower bound. Percentage deviation of the heuristic makespan from its 

lower bound was calculated. Similarly, the number of times the heuristic makespan 

equals the lower bound was also noted. Altogether, for each of the heuristic algorithms 

Hl through H7, the following statistics were computed: 

ni Number of times heuristic makespan equalled its lower bound. 

AVR Average percentage deviation of the heuristic makespan from its lower bound. 

MAX Maximum percentage deviation of the heuristic makespan from its lower bound. 

For each of the seven algorithms Hl through H7, Tables 1 through 3 show the results 

obtained by solving eighty problem for each problem size. The heuristic algorithms Hl 

and H2 are not very attractive to solve a problem since the number of non-optimal 

solutions, average and maximum percentage deviations of the heuristic solutions from 

their respective makespan are quite large and do not decrease with the increase in the 
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size of the problem. Heuristic algorithm H3, while better than algorithms Hl and H2, is 

still not very effective in minimizing makespan. The effectiveness of heuristic algorithms 

H5 through H’7 in finding a minimum makespan schedule increases with the number 

of jobs. For heuristic algorithms H4 through H7, results in Tables 1 through 3 show 

that the average and maximum percent deviation of heuristic makespan from its lower 

bound consistently decrease with the increase in the size of the probIem. This indicates 

that the heuristic algorithms. that generate non-permutation schedules perform much 

better than those that generate only the permutation schedules. It is also evident that 

heuristic algorithm Hj performs better than algorithm Hi for 1 5 i 5 j L 7. Even 

though algorithm H7 is an improvement over algorithm H6, the improvement is not as 

significant as that from H5 to H6. 

Table 1 Number of Times Heuristic Makespan Equals Lower Bound 

c 
140 0 0 22 32 58 78 79 
150 0 0 22 30 59 80 80 

Total 22 90 391 569 830 1122 1161 
Percent 1.62 6.62 28.75 41.84 61.03 82.5 85.37 

From Tables 1 through 3, it is clear that the effectiveness of the proposed heuristic 

algorithms H4 through H7 increases as the number of jobs increases. In view of the fact 

that lower bounds were used instead of the optimal makespans, actual percent deviations 
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from optimal makespan will be less than those reported in Tables 1 through 3, especially 

for small sized problems. Further, since the lower bounds may be weak for some problem 

categories, the percentage deviation of heuristic makespan from lower bounds for these 

problems may be much larger than the actual percentage deviation from their optimal 

solutions. Thus, we may conclude that the performance of the heuristic algorithms 

H4 through H7 does not significantly deteriorate with changes in the problem data 

characteristics. 

Table 2 Average Percentage Deviation of Heuristic Makespan from Lower 

Bound 

# of Jobs Average percent deviation from lower bound 
n Hl I H2 1 H3 I H4 1 H5 1 H6 I H7 
4 1 16.78 1 13.39 1 10.04 [ 5.06 1 4.89 ( 3.79 1 3.47 
5 1 18.93 I 13.67 1 8.78 I 4.30 I 4.71 1 2.39 1 2.11 

21.81 
21.38 
22.29 
22.99 
24.07 

4 
23.78 
23.87 

16.26 
16.01 
17.20 
19.60 
19.99 
20.19 
20.60 

I  

40 1 24.25 ) 21.83 1 10.08 1 2.18 1 2.08 1 0.29 1 0.17 
50 1 24.45 1 22.10 10.02 1.47 1 2.15 1 0.19 1 0.10 

.OO 23.71 10.34 0.81 1.88 0.00 1 1 1 1 1 1 0.00 
123.13 1 19.99 1 9.79 12.61 12.75 i 0.94 IO.74 

The computational times required to solve the problems were not measured. The solu- 

tions by heuristic algorithms required very small amount of CPU time on the VAX 6620 

computer. In any case, each of the proposed heuristic algorithm is polynomkdly bounded 

as the computational effort required is O(nlogn). Within the polynomial bounded limits 

of the computational times, the order of computational time required by various algo 

rithms is as follows: Hl - H2(H3) - H4(H5) - H6 - H7 where the later algorithms 

require more computation time than the earlier heuristic algorithms. 
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From a +ctical viewpoint, use of heuristic algorithms Hl through H3 is not recom- 

mended for solving a problem. The selection of a specific heuristic algorithm from H4 

through H7 depends on the specific problem characteristics. However, the computational 

results above suggest that use of heuristic algorithms H6 or H7 would be the best choice 

to solve a given problem. 

Table 3 Maximum Percentage Deviation of Heuristic Makespan from Lower 

Bound 

I I I I I 
39.98 41.97 i 33.89 1 19.69 1 15.54 1 -- -- I ~~ I 1 f 14.86 1 ! 11.70 f 

20 43.97 43.L. ii’ 1 35.04 I 22.22 I 19.71 1 14.10 t 10.83 1 ( -- .~ 
25 41.72 41.72 i 29.16 t 

I  I  

ii 
_-..- _-..- -_.-_ 20.83 18.06 13.41 10.02 
44.81 ( 44.81 32.51 13.10 18.35 7.03 7.03 

40 44.72 1 44.72 29.72 16.91 13.12 11.33 9.09 
50 1 43.04 1 43.04 [ 32.14 ) 14.37 1 16. 23 10.99 7.65 
70 1 43.88 t 43.88 1 33.06 1 11.48 1 13.45 ( 1.94 0.67 

t 90fi 42.49 1 42.49 1 27.92 1 7.65 1 11.75 1 0.00 1 0.00 
t  

I  I  I  !  

100 1 41.36 1 41.36 1 29.31 1 7.17 1 12.68 1 1.48 1 0.00 1 
I  

120 42.43 42.43 29.11 8.34 12.47 1.44 0.00 
140 42.14 42.14 28.83 6.40 14.35 3.13 0.16 
150 42.01 42.01 27.32 5.04 10.20 0.00 0.00 

Overall 45.42 44.81 35.74 29.34 27.05 19.46 19.46 

4.3 Effectiveness of Lower Bounds 

To investigate the closeness of these lower bounds to their respective optimal makespans, 

problems involving four to seven jobs were solved using complete enumeration procedure 

as follows: for each of the n! schedules of the first operations, an optimal schedule for 

the second operations was found using property 2. The best of these schedules gives the 

optimal makespan. Based on 80 problems of each problem size, the following statistics 

were collected: 
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nr Number of times the optimal makespan equalled its lower bound. 
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rar Number of times the deviation of the optimal makespan from its lower bound was 

greater than zero but less than or equal to 3 percent. 

ns Number of times the deviation of the optimal makespan from its lower bound was 

greater than 3 per cent but less than or equal to 5 percent. 

nq Number of times the deviation of the optimal makespan from its lower bound was 

greater than 5 percent. 

AVR Average percentage deviation of the optimal makespan from its lower bound 

MAX Maximum percentage deviation of the optimal makespan from its lower bound. 

The results in Table 4 above show that the proposed lower bounds are quite effective for 

a large number of problems. In 61.87 percent of cases, the lower bound is equal to its 

optimal makespan. Only in 13.75 percent of the problems the optimal makespan deviated 

from its lower bound by more than 5 percent. 

Table 4: Effectiveness of Lower Bounds 

In general, an increase in the range of time-lags causes the lower bounds to deviate 

more from their optimal makespan values as was confirmed by the empirical results for 

various heuristic algorithms reported above. Further, the computational results in Tables 

1 through 3 indicate that if heuristic algorithm H7 is used to find an upper bound on 

makespan to be used in a branch and bound algorithm employing the proposed lower 

bounds, in over 85 % of the problems, an optimal schedule will be found at its root node. 

This indicates that a large percentage of problems can be optimized using the proposed 

heuristics and lower bounds. 
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5 Conclusions 

JATINDER N. D. GUPTA 

This paper has considered the single machine scheduling problem with multiple op- 

erations and time-lags and has shown that the 110; = 2, time - lagalC,, and the 

l]Oi > 1, time - lUgSlC - problems are NP-hard in the strong sense. In view of the NP- 

hard nature of these problems, polynomial heuristic algorithms are proposed for finding a 

minimum makespan schedule for the l]Oi = 2, time- lags]C,, problem. Computational 

experience with randomly generated problems indicates that the proposed heuristic algo- 

rithms are quite effective in minimizing makespan. Further, empirical results show that 

the effectiveness of the proposed heuristic algorithms increases as the number of jobs 

increases. Algorithms H6 and H7 give the best results. 

Several unresolved issues are worthy of future research. Firstly, finding worst-case 

performance ratio of the proposed heuristic algorithms would be useful. Secondly, de- 

velopment of the solution techniques for the l]Oi > 1, time - lags]C,, problem is both 

interesting and desirable. Thirdly, consideration of precedence relationships between op- 

erations to develop heuristic algorithms will be useful. Fourthly, extension of the above 

results to multiple machines and multiple stages cases will provide more practical uses of 

the techniques proposed here. Finally, development of solution techniques for objective 

functions other than makespan will be worthwhile. 
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